You are viewing a specific page revision. To view the current version of this page, click here.

Recommended Hardware

The official documentation only mentions the minimal hardware capable of running Unreal Engine 4 editor at all. You need better hardware to work efficiently. Recommended hardware requirements depen...

The official documentation only mentions the minimal hardware capable of running Unreal Engine 4 editor at all.

You need better hardware to work efficiently. Recommended hardware requirements depend on your specialization and utilized tools.

The money thing

The "target hardware" mentioned below probably isn't an issue for the regular studio with budget or professional individuals already earning money in the industry. Although might be too expensive for you in the place you live in. What's now?

  • Forget laptops. It's great for web development or 2D games/graphics. Although a proper laptop for developing 3D games would incredibly expensive and even 17-inch screen still too small.
  • Consider building up your developer's rig in phases.
    • Upgrade to small SSD first, if you don't use one already for the operating system, applications, and place where you store project and frequently used assets. Otherwise, you won't be able to fully utilize the rest of the recommended hardware.
    • GPU, RAM sticks and drives can be easily swapped any day. You can upgrade it gradually and get some money back by selling the old component.
    • Changing CPU is a long-term investment. Often requires purchasing a new motherboard or DDR4 RAM (if don't use it yet). Don't buy the cheapest motherboard and power supply possible, it might prevent you from utilizing properly all your components and upgrading rig in the future.
  • Buy used parts, it's small risk and you help to save the planet.
    • It was especially worth buying used GPUs, usually sold because the owner bought a newer one. Now it could be a trap, GPUs used in blockchain mining can fail just a few months after purchase.
    • Still, buying used screens can save hundreds of dollars. And most developers need 2 of them for efficient work. One of such screens could have a small defect, but what do you care if it's used for text editing?

3D game

This table should give you a quick overview. We look at the power/price ratio of the hardware components recently available in stores. Your specific needs may vary, the article will try to cover that in sections below the table.

Specs below ignore the existence of a hard disk drive, as HDD is significantly slow down any non-trivial operation in the editor or related tools. Upcoming consoles will finally make SSD a standard for gaming. HDD usage should be limited to the additional file storage, i.e. project's repository

CPU [threads]

GPU [model]

RAM [GB]

SSD [GB]

Everyone

6

GF 1060

16

256/512

Art

6-16

GF 1060 / RTX 2070

32

1 TB

Audio

6-8

GF 1060

32

512

Design

6

GF 1060

16

512

Programming

6-32

GF 1060

16-32

512

  • Artists would use more memory (RAM and storage) because their creation tools need for asset source, caches and simply processing data. The heavier assets are, the more memory would be used in the editor while importing assets and using them.
  • Artists working with shaders or Houdini simulation would definetely use more CPU threads to speed up their work.
  • Audio guys (sound designers and composers) need a lot of RAM for operating on uncompressed audio samples.
  • Solo programmers compiling only their small project wouldn't need expensive CPU nowadays. This might useful if the codebase is growing (many programmers) or you're compiling engine from the source.

CPU

Unreal Engine beautifully utilizes multi-threading in many critical areas. More CPU threads mean work done faster, i.e. 16 thread CPU will compile shaders over 2x faster than 8 thread CPU (given that some CPU cycles are busy with other tasks).

  • Confirmed 100% CPU utilization of 64 threads while compiling code (Unreal Build Tool).
  • Confirmed 100% CPU utilization of 64 threads while compiling shaders. If you're an artist working daily with shaders, more CPU threads will make less wait.

The bottom line

  • AMD made the choice for professional very easy these ideas. AMD Ryzen 5 3600 - this the entry-level CPU for developers. 6 cores, 12 threads for $200 only. Eating barely 65 watts of power.
  • Fewer threads power than next-gen consoles, but Turbo mode increases clock up to 4.2 GHz. It's not worth to buy a cheaper CPU for work.
  • Consider buying more expensive CPU if you frequently run processes eating all 12 threads.

You need to have enough RAM to properly utilize all the available cores. Unwritten rules say you need at least 1GB RAM for every CPU thread.

GPU

  • GeForce 1060 is the most popular card according to Steam Hardware Survey. It offers an awesome power/cost ratio. Grab 6GB version.
  • Definitely consider a better GPU, if you can afford it. Even if this mainly for work - running an unoptimized game would be less painful. Although every modern 3D game should run well on 1060.
  • Developing game for next-gen consoles could also require team members to acquire comparable GPUs.

RAM

When you might need 32 GB RAM and more?

  • Using other memory-hungry tools while keeping UE editor open. Basically, if you're an artist.
  • Compiling code or shaders with more than 16 CPU threads.
  • Cooking the game - it needs to process all used assets. Heavy meshes, textures, sounds...
  • Editor doesn't usually free up memory after closing assets/maps. It loves to keep it there for you if you'd like to back to closed assets. Working with a number of heavy assets can quickly fill your RAM.
  • Testing multiplayer game locally. You can launch multiple instances of the multiplayer game on a single machine, practically player as many players at once. It's required to test if the given feature works properly. You should be prepared that every next instance of the game will eat proportionally more RAM. If a single instance eats 10 GB of RAM, running 2 game instances will eat 20 GB. And a dedicated server would be another game instance.
  • Your team simply doesn't apprehend the concept of general memory management. It can be caused by

SSD

NVMe SSDs are technically a few times faster in write and read than classic SATA SSDs.

  • Upgrading to NVMe it's not a revolution like an upgrade from HDD to SSD. You might not difference in the performance of the operating system, internet browser and such.
  • The boost is noticeable while performing heavy lifting, i.e. compiling engine/shaders, processing heavy assets, cooking game, launching project for the first time. Basically anything that load many gigabytes of data.

Data server

Used as a server for repository or simple "network drive". This is the last bastion of HDDs. Even a cheap laptop or micro-PC would handle a small project.

Build machine

Professional studios usually use a dedicated machine (or many of them) to support developers.

  • This is the computer which builds binaries every time the programmer submits a code change. It's required if you got more than 1 programmer.
  • With time such machine(s) can handle more and more tasks
    • cooking and packaging game for tests
    • running automated tests every day, reporting performance and detecting many critical issues - less manual work required from humans

It's usually more powerful than the average developer machine. It needs to perform heavy operations on a daily basis.

  • Compiling the engine in multiple configurations.
  • Cooking the game many times a day requires a faster CPU and more RAM, so you wouldn't wait an hour for every cook.
  • These operations tend to be run very frequently in days before every milestone and the game release. A slow build machine would be simply slow down the progress of the entire team.
  • Running automated tests for the asset-heavy game or multiplayer game also need proper hardware.

Screens

As mentioned above, it's kind of standard for a developer to have 2 screens. This way we can have multiple editors/tools opened simultaneously, significantly improving daily workflow.

  • The standard is to use Full HD 1920x1080 resolution. Even professional studios usually just buy Full HD for all the people.
  • 4K or ultra-wide screens are great for consuming media, it works well for some developers - eliminating the need for multiple screens.
  • 2560x1440 resolution could give you the best resolution/price ratio! It offers 70% more working area than a Full HD screen.
    • Main editor window would fit HD viewport and few windows around it (mini Content Browser, Outliner, Details) at once.
    • Much more space for this huge blueprint/material graphs.
    • And any other panels in other tools, i.e. 2 text editors simultaneously visible in the Visual Studio.
Updated ago